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The unique properties of magnetic fluids are exploited to create a static interface between two fluids in the
context of studying Rayleigh-Taylor �RT� driven mixing. Paramagnetic fluids have previously been used for
studying this phenomenon �Z. Huang et al., Phys. Rev. Lett. 99, 204502 �2007��, as have ferrofluids �G. Pacitto
et al., Phys. Rev. E 62, 7941 �2000��, but we propose using magnetorheological fluids instead to attain better
control of the initial condition. As the motivation for using this technique is to quantify the effects of the initial
condition on late time behavior of the RT instability, it is important that the initial condition be prescribed at
a scale large enough to reliably measure. As a first demonstration of creating such an interface, this technique
is applied to the two-dimensional �2D� instability with a single-mode sinusoidal interface. This technique has
been used to study both moderate and high Atwood number systems, with successful control of the interface in
an A=1 system being demonstrated. The nonlinear growth phase for this initial condition is examined and
comparisons are made with both analytical models and published numerical and experimental work on the 2D
single-mode RT instability. Measurements of the late time RT spike behavior reveal poor agreement between
the experimental results and the analytical models.
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When two fluids of different densities, separated by a per-
turbed interface, are accelerated normal to the interface, vor-
ticity is baroclinically generated by the misalignment of the
density and pressure gradients. This vorticity generation
leads to the unbounded growth of the interfacial perturba-
tions known as the Rayleigh-Taylor �RT� instability �1–3�.
This instability plays a significant role at very large scales in
the case of a supernova, and at the very small scales present
in inertial confinement fusion, where fluid mixing conse-
quent to the interface distortion and breakup is detrimental to
the energy output from the reaction.

The growth of these perturbations and the mixing process
in general can be broken up into four different and distinct
flow regimes. In the linear regime the amplitude is still much
smaller than the wavelength and the different modes of the
perturbation grow independently of one another, exponen-
tially in time �3�. Deviations from this exponential growth
begin to occur when the amplitude of the perturbations
grows to �0.1�–0.4� �4�, after which the amplitude growth
saturates for single-mode interfaces and then evolves into a
state of self-similar mixing for multimode initial conditions.
It is these later stages of the progression of this instability,
where amplitude growth saturation and self-similar mixing
occur, that are the focus of most current investigations since
the early time behavior is well characterized by Taylor’s lin-
ear theory which has been validated by experiments and
simulations. However, there is less consistency between
theory, experiments, and simulations for the nonlinear
growth regime where the transition to saturation occurs. One
of the biggest challenges with the experimental work is the
difficulty in prescribing and characterizing the initial condi-
tion. Concerning single-mode perturbations, the most com-
mon method of generating the initial condition involves agi-
tating the interface of an initially stable stratification. The
original experiments performed by Lewis to validate Taylor’s
theory used an oscillating paddle to disturb the interface �4�.

A similar perturbation technique is employed by Emmons et
al. �5�. Later work improved upon these experiments by os-
cillating the tank containing the liquids to produce a standing
wave on the interface �6–8�. Each of these experiments be-
gan with an initially stable fluid stratification and uses an
acceleration mechanism to drive the instability.

There are also techniques utilizing gravitational accelera-
tion of an initially unstable stratification. While these meth-
ods �9–11� eliminate the complications from artificial accel-
eration, they do give rise to other issues regarding control of
the initial perturbations and precise knowledge of those ini-
tial conditions. A more recent technique is to make use of the
unique properties of magnetic liquids. As demonstrated by
Huang et al. �12�, such fluids can be used to create an ini-
tially unstable stratification without the use of a plate for
separation or any need to invert the test section. Although
control of the wavelength of the perturbations has been dem-
onstrated, one possible outstanding issue with these experi-
ments is the inability to directly measure the initial condi-
tions as a result of the extremely small amplitudes. In
another set of experiments utilizing magnetic fluids, the con-
trol of the perturbations relied upon forcing a magnetic in-
stability of the particular fluid used �13�.

In this paper, we demonstrate a technique designed to
address many of the concerns arising from the previous ex-
periments. This technique also makes use of magnetic fluids;
however, we employ a different class of magnetic liquids
than those used in the previous works �12,13�. One property
exhibited by all magnetic liquids is the body force that is
generated in the presence of a magnetic field can be used to
suspend the magnetic fluid over a less dense fluid. The par-
ticular type of fluid used in these experiments is called a
magnetorheological �MR� fluid. An additional property
unique to this class of magnetic fluids is the state change that
occurs in the presence of the magnetic field. The viscosity of
an MR fluid increases rapidly with the strength of the applied
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field, to the point where the MR fluid behaves like a visco-
plastic solid. This property facilitates good control of both
the amplitude and wavelength of the initial perturbations as
will be demonstrated. These fluids do have a finite reaction
time to the magnetic field due to the formation and release of
the fine structure that facilitates the viscosity changes. To the
authors’ knowledge this response time has not been experi-
mentally measured. Instead, this time is referenced indirectly
through the measurements of MR fluid device performance
�such as shock absorbers�, whose response times are on the
order of 10 ms �14�. A very brief study was carried out in a
past iteration of this experiment, based on varying the rate of
removal of the magnetic field, to gauge any effect this fluid
reaction time might have on the experiment and none was
found.

Magnetorheological fluids can be created from a variety
of different components differing based on the needs of the
application; however, the same types of components are used
in all mixtures. The fundamental ingredient in all MR fluids
is carbonyl iron powder, comprised of spherical particles,
usually 0.1–10 �m in diameter. The iron powder used in
these experiments is the carbonyl iron powder CR from
BASF, with particles having a mean diameter of 4.5 �m.
This particular grade is selected for its optimal response to
magnetic fields �15�. These particles are suspended in hexane
with a volume fraction of particles �=0.31. A small amount
���0.005� of the surfactant oleic acid is also added to pre-
vent particle agglomeration. This formulation results in a

MR fluid having a density of 2735 kg /m3 and a viscosity of
�5�10−3 Pa s. Coupling this fluid with water to form an
interface results in an Atwood number of A= ��1−�2� /
��1+�2�=0.46. The MR fluid and water are immiscible and
the interfacial tension between the two is estimated to be that
between pure hexane and water, which is �=0.051 N /m.
Additionally, an interface is also set up using the same MR
fluid and air resulting in an Atwood number of 0.999�1.

A simple procedure is used to set up the initial conditions
with the MR fluid statically suspended over water. To create
the shaped interface, an aluminum plunger with the desired
perturbation machined into it is inserted into the test cell.
Water is then poured over the plunger and frozen, thus taking
the shape of the plunger. Once the plunger is removed, the
MR fluid is poured over the ice. Next, the MR fluid is im-
mobilized by placing the test cell between two banks of mag-
nets, and the ice is then melted resulting in an interface be-
tween MR fluid and water. For the high Atwood number
configuration, the water is drained leaving an interface be-
tween MR fluid and air. It is necessary to use ice for this
process, as direct shaping of the MR fluid inside the mag-
netic field causes severe distortion of the interface shape. The
magnet banks are attached to pneumatic cylinders that, when
fired, retract from the test cell and release the immobilized
MR fluid, thus allowing the instability to develop. A sche-
matic of this setup is shown in Fig. 1. It should be noted that
this pneumatic retraction system is completely divorced from
the test cell so as to avoid any unwanted jitter during the
retraction process. The test cell containing the fluids has an
interior width of 7.6 cm, a depth of 1.27 cm, and a height of
22 cm. The side panels of the test cell are constructed of
polyacetal with a thickness of �1.5 cm, while the front and
back panels for viewing are made of acrylic with a thickness
of 1.27 cm each. The banks of magnets shown are designed
to create a relatively uniform field across the width of the test
cell, with a positive gradient in the vertical direction. This is
done using two rows of disk magnets with the top row con-
taining stronger magnets. The state change of the MR fluid is
due to the formation of chainlike structures which align
themselves along the magnetic-field lines. This magnetically
generated structure is what allows the fluid to keep its shape
when the ice is removed eliminating the need for any further
modulation of the magnetic field.

The diagnostics for this experiment present a particular
challenge. Even very thin films of the MR fluid are optically
opaque, and such films are deposited along the walls by the
Rayleigh-Taylor spikes which can hide the vortex cores that

FIG. 1. Schematic of test cell with magnetic immobilization
system.

(b)(a) (c) (d) (e)

FIG. 2. Images from a typical A=0.46 experiment involving MR fluid �black� and water �white� showing the development of the
instability from the initial condition to the late time nonlinear regime where the bubble and spike velocities have saturated. � is a nondi-
mensional time using a characteristic time t�=�� / �Ag�=0.068. �a� t=0 ms, �=0 �b� t=52 ms, �=0.74 �c� t=92 ms, �=1.31 �d� t=124 ms,
�=1.77 �e� t=168 ms, �=2.4.
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typically travel with the spikes. Further, as there is MR fluid
in contact with the walls initially, there is also a film left on
the walls as the RT bubbles grow which obscures the bubbles
when using conventional backlight photography. To over-
come this limitation, a high speed radiography system is em-
ployed. A continuous x-ray source operating at 110 kVp and
165 mA is used for a duration of 0.5 s for each experiment.
The attenuated photons transmitted through the test cell are
converted to visible light using a Kodak Lanex Regular scin-
tillator screen. This screen is imaged using an image inten-
sifier coupled to a Photron Ultima 1024 16k 1024
�1024 pixel CMOS camera recording at 250 frames per
second. A sequence of five images taken with this imaging
system for the A=0.46 configuration is shown in Fig. 2,
while the physical layout of the equipment is shown in the
schematic in Fig. 3. The second image sequence shows the
development of the A�1 configuration, Fig. 4. The moderate
Atwood number setup shows the characteristic mushroom
shapes associated with the RT instability, which are the result
of shear-induced roll ups starting near the leading edge of the
spikes due to the flow of water rising into the bubbles. No
such roll ups are seen in the high Atwood number series as
this shear-induced vorticity is not strong enough to entrain
any of the lighter fluid due both to the reduced shear from
the much lower viscosity of the lighter fluid and the very
large inertia difference between the two fluids resisting the
tendency of that shear to generate the roll up structure. The
spikes do appear to narrow as expected, but only slightly
before the leading edges grow beyond the boundaries of the
interrogation window.

A wide range of initial conditions can be created by the
technique described above; however, only a single-mode
sinusoidal wave form is reported here to demonstrate the

technique. This wave form has a wavelength of 2.12 cm and
initial amplitude of 0.16 cm. A modal decomposition of the
initial conditioin of a typical experiment via the Fast Fourier
Transform is shown in Fig. 5, revealing the amount of con-
trol afforded by this technique. The large initial amplitude to
wavelength ratio of the initial condition is on the verge of the
transition to the nonlinear growth stage of the instability,
which results in the departure from the linear theory at a very
early time as shown in Fig. 6. The data presented in Fig. 6
represent 15 measurements and the error bars show the stan-
dard deviation at each point in time. The time axis is made
nondimensional using a characteristic time for the system,
t�=�� / �Ag� �16�. This definition appears to be a good
marker of the transition to saturation of the velocity of the
bubbles and spikes, as the growth rate appears to saturate at
t / t��1. The experiments presented here extend only into the
nonlinear regime where amplitude growth saturation occurs,
prior to the start of the self-similar mixing regime.

There is a consensus that the velocities of the single-mode
RT bubbles and spikes saturate at late times for A�1. This
relationship is confirmed by measurements of the growth rate
at late times, i.e., t	 t�, the results of which are listed in
Table I. These values are obtained by performing linear least-
squares fits to the amplitude time history data from Fig. 6,
where a linear relationship most closely matches the data.
Significant asymmetry of the growth rates is observed be-
tween the bubbles and spikes. This is expected at moderate
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FIG. 3. Side view schematic of the experimental apparatus.
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FIG. 4. Images from a typical A=1 experiment showing the development of the instability at an interface between the MR fluid �black�
and air �white�. In this configuration, only the velocities of the bubbles reach saturation while the spikes show continued acceleration before
extending beyond the interrogation window. The characteristic time is t�=0.047. �a� t=0 ms, �=0 �b� t=47 ms, �=1.0 �c� t=70 ms, �
=1.5 �d� t=81 ms, �=1.75.
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FIG. 5. Modal decomposition of the measured wave form com-
pared with the imposed wave form.

EXPERIMENTAL MEASUREMENTS OF THE NONLINEAR… PHYSICAL REVIEW E 81, 026303 �2010�

026303-3



to high Atwood numbers, though the values do not agree
well with the established �and frequently cited� nonlinear
models of Oron et al. �17� and Goncharov �16�. These two
models yield the same predicted values of the saturation ve-
locities for the bubbles and spikes, given as Ub,s
=�2Ag / �3�1
A�k� for the two-dimensional �2D� case,
where �+� is for bubbles and �−� is for spikes. The two mod-
els are developed from different methodologies: a simple
buoyancy-drag model in the case of Oron et al. and a poten-
tial theory formulation by Goncharov. It would seem reassur-
ing that the two independently developed models achieve the
same results, but comparisons with these experiments do not
appear to support the accuracy of the models, especially with
respect to the behavior of the spikes. Although the model
does predict asymmetry in the saturated growth rates, the
rates for the spikes are significantly less than the experimen-
tally measured values as shown in Table I. This paper is not
the first to show disagreement with these models; their accu-
racy is called into question in several recently published
works �8,18,19�. Evidence of the deficiencies of the model
are described by Goncharov �16� who shows a comparison of
the 2D model and simulations at moderate Atwood numbers:
the results for the bubbles compare favorably, while the
spikes in the simulations greatly out pace the model. Simi-
larly, Sohn �20� shows the same type of divergence with
increasing Atwood numbers as compared with a slightly dif-
ferent potential theory model. Discrepancies such as those
seen here for 2D are also observed in 3D when compared
with both experiments �8� and numerical simulations �18�.
Furthermore, a recent paper by Mikaelian �19� goes into de-
tail to examine the limitations of the Layzer-type potential
theory models. The guidance given for applying these mod-

els to the RT bubbles recommends an upper limit on the
initial amplitude based on the wavelength and Atwood num-
ber, and this condition is satisfied by the initial conditions
specified in these experiments, which is further evidenced by
the relatively good agreement between the experiments and
the model. Again, the use of the arbitrary Atwood number
model for the RT spikes is not recommended, which is re-
flected in the poor agreement between these experiments and
the model. It is worth noting when considering these results
that these models do not incorporate the effects of the vorti-
ces �vortex pairs in 2D and vortex rings in 3D� near the head
of the spike, viscous effects, or surface tension, all of which
may contribute to the observed discrepancies.

It is clear from Fig. 6 that the rate of change of the am-
plitude of the spikes in the A�1 system is not saturating at
late times. This is in agreement with the Layzer-type poten-
tial theory models: e.g., the model of Zhang �21� predicts an
asymptotic acceleration for the spikes instead of an
asymptotic velocity. A direct comparison of the experimental
acceleration to this model is presented in Table II. There are
three different values presented for the experimental results,
with the nonlinear data truncated at successively larger non-
dimensional times. The largest measured accelerations are
�35% lower than the predicted free fall acceleration; how-
ever, the measurements indicate this acceleration to be con-
tinuing to grow. Unfortunately, as the spikes grow beyond
the viewing window so quickly, the extent of this accelera-
tion is unknown, so it is not certain how much higher the
measured values of the acceleration would grow before satu-
rating. There are also other effects which may be responsible
for the discrepancy between the measurements and the
model values. The model does not account for either surface
tension or viscosity, both of which certainly have an effect
on the flow in the experiments, especially surface tension as
the two fluids are immiscible. These two factors serve to
slow the progress of the spike down via viscous drag and by
limiting how thin the spikes may become preventing the
ideal asymptotic limit of an infinitely thin spike.

It is also important to look at how these results fit into the
larger body of published results from other experiments and
simulations. Complicating this task is the fact that these prior
works all have different Atwood numbers and initial condi-
tions making any direct comparisons difficult. One way to
facilitate the comparison is to restate the results in another
form such as the dimensionless Froude number. Taking the
definition used in �8,18� gives Froude numbers of Frb,s
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FIG. 6. Experimentally measured bubble and spike amplitudes
as a function of time.

TABLE I. Nonlinear growth rates: �o /�=0.07.

A

Experimental Oron et al.

U
 �mm/s� U
−2D �mm/s�

Bubbles 0.46 106
12 84

0.99 94
10 105

Spikes 0.46 209
10 139

TABLE II. Late time acceleration measurements of the RT
spikes for the A=1 configuration. Three nondimensional cutoff
times are used to estimate the acceleration at successively later
times.

� dU
dt �


�mm /s2�

t / t��1.0 6330

Exp. t / t��1.2 6390

t / t��1.4 6440

Zhang �21� 9807
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=Ub,s /�Ag� / �1
A�. The Froude numbers measured in
these experiments as well as those predicted by the models
are shown in Table III along with values from some other
experiments and simulations of the 2D single-mode instabil-
ity. Unfortunately, the body of work cited here does not pro-
vide a consensus as to what the Froude number should be.
Results from both experiments and simulations seem to
straddle the value suggested by the analytical models. There
are some interesting points to take away from this informa-
tion. First, the results from the experiments presented here
and the results of the simulations of Sohn �20� both show an
asymmetry in the measured values, with the spikes giving
higher Froude numbers than the bubbles. The experimental
results of Ratafia �6�, however, do not appear to show any
asymmetries at all, similarly to the models of Goncharov and
Oron et al. The very low Atwood number in that study �6� is
likely the reason for this, as no asymmetry is expected in that
regime. Furthermore, the very low Atwood number results of
Sohn �20� also show little asymmetry. These two studies
point out that the models do appear to work well in the low
Atwood number regime. Regrettably, no information on the
asymmetry �or lack thereof� is reported in the works by
Huang et al. �12� and Waddell et al. �7�. A positive result is
that the relatively higher value of the Froude number in the
present experiments as compared with the models is also
seen in the reported results for the spikes in the experiments
of Huang et al. As to the symmetry of the model values, this
is expected as this Froude number definition uses the same
characteristic velocity as the saturated velocity expressions
given by the drag-buoyancy and potential flow models. The

present experimental results for the bubble Froude number at
the two Atwood numbers studied here straddle the model
estimates just as with the measured saturated velocities. This
may be due to periodicity issues as evidenced by the differ-
ing number of bubbles in each Atwood number configuration
with the A�1 experiments producing four bubbles while the
A=0.46 experiments routinely only showed two bubbles
with large growth as shown in Figs. 2 and 4.

In summary, we have demonstrated the viability of using
magnetorheological fluids to create a well-defined static in-
terface between a MR fluid and another fluid for the purpose
of studying the Rayleigh-Taylor instability. The demonstra-
tion of the technique was done with a simple periodic sinu-
soidal interface shape, and the experimental results reveal
disagreements with the analytical models similar to those
reported in some of the previous works, providing more evi-
dence that these well established models may need to be
reexamined particularly in the moderate Atwood number re-
gime. The unique capabilities of this experimental technique
are currently being used to examine the role of the initial
conditions on the nonlinear behavior. Other more complex
initial conditions will be studied, including continuous and
discontinuous wave forms and single and multimode wave
forms, with arbitrarily and independently variable amplitudes
and wavelengths. Furthermore, extensions to multimode ini-
tial conditions will be utilized to examine the turbulent mix-
ing regime and the associated models, again taking advan-
tage of the interface shaping ability to gain a better
understanding of the role of initial conditions in the devel-
opment of the Rayleigh-Taylor instability.
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